診療 up to date : 平成25年10月24日

エリスロポエチン(EPO) 抵抗性貧血の原因と対策について

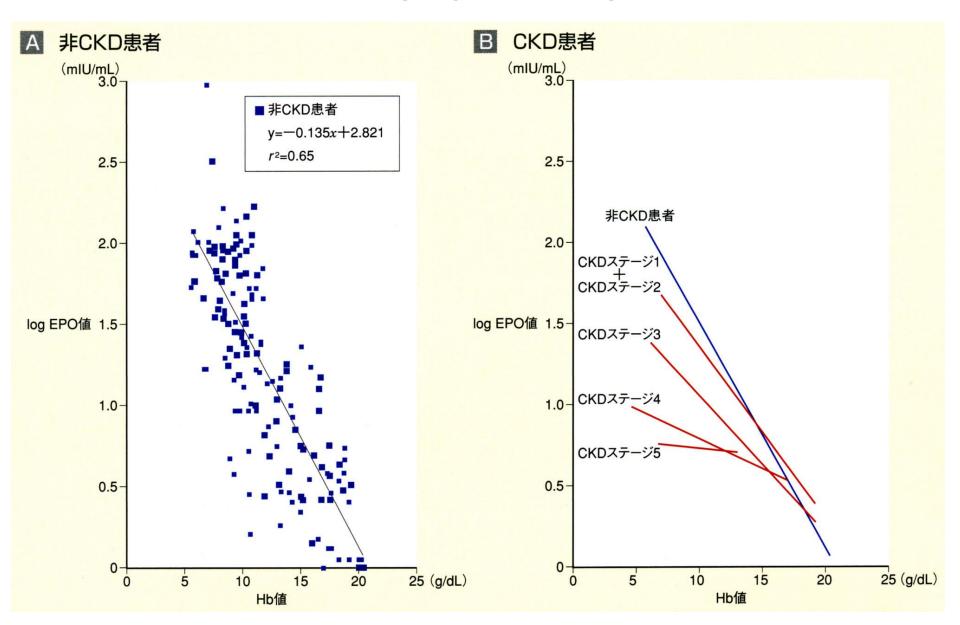
腎臓内科 高 橋 則 尋

腎臓の働き

- ① 老廃物の排泄 尿素窒素・尿酸・クレアチニン など
- ② 水・電解質の調節ナトリウム・カリウム など
- ③ 酸・塩基平衡の調節 体内を弱アルカリ性に保つ
- 4 ホルモン産生 血圧調節(レニン・アンジオテンシン系) 骨代謝(活性型ビタミンD) 造血ホルモン(EPO)

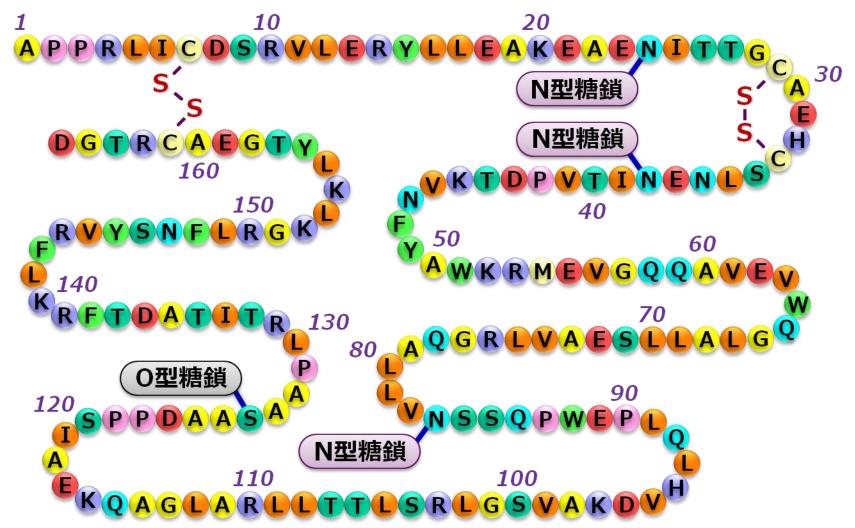
腎性貧血とは

腎不全に伴って認められる貧血であり、

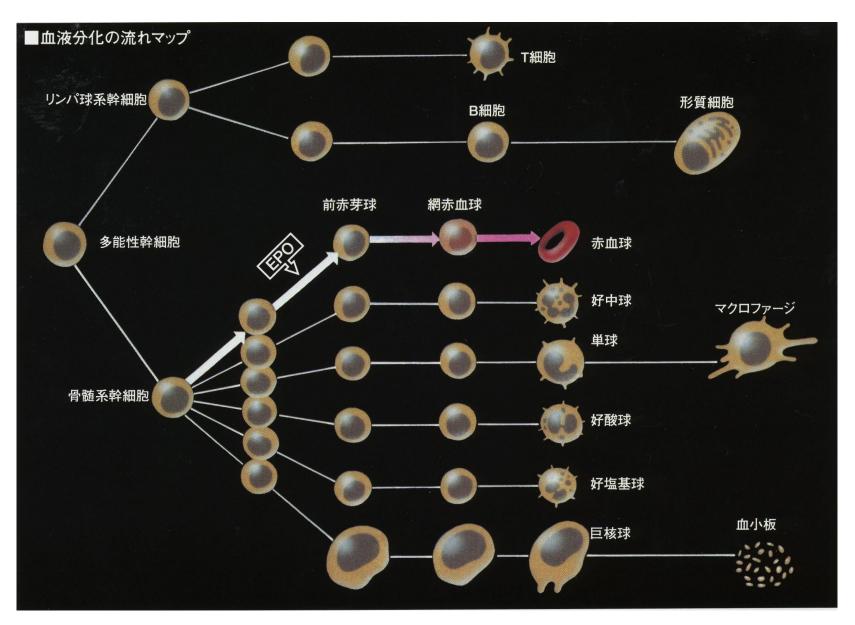

赤血球の

- ①産生の障害
- ②破壊の亢進
- ③体外喪失

によって起こるものである。

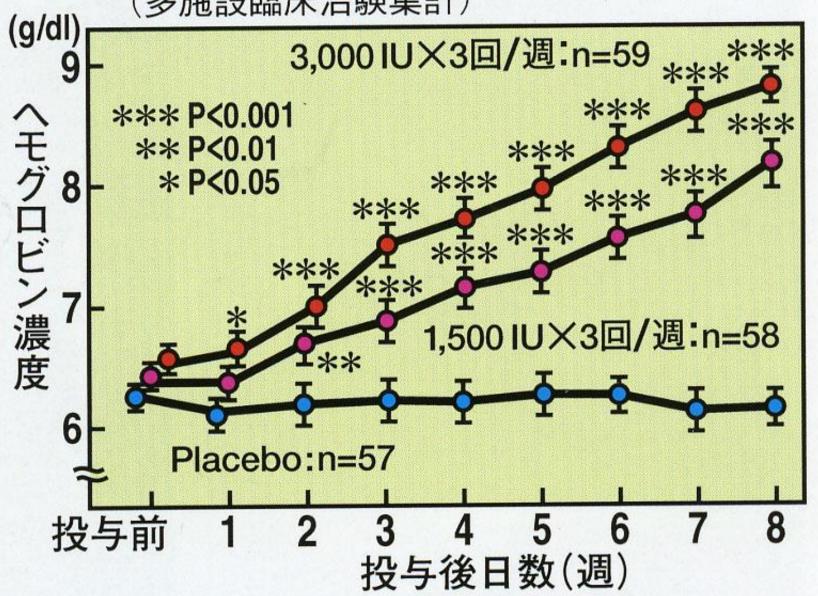

主たる要因はEPOの生成障害である。

EPOと腎機能の関係



EPOの構造

165個のアミノ酸残基からなる糖蛋白質(分子量:約3万Da)



血液分化の流れ

■rhEPOによる貧血の改善

(多施設臨床治験集計)

赤血球造血刺激因子製剤(ESA)

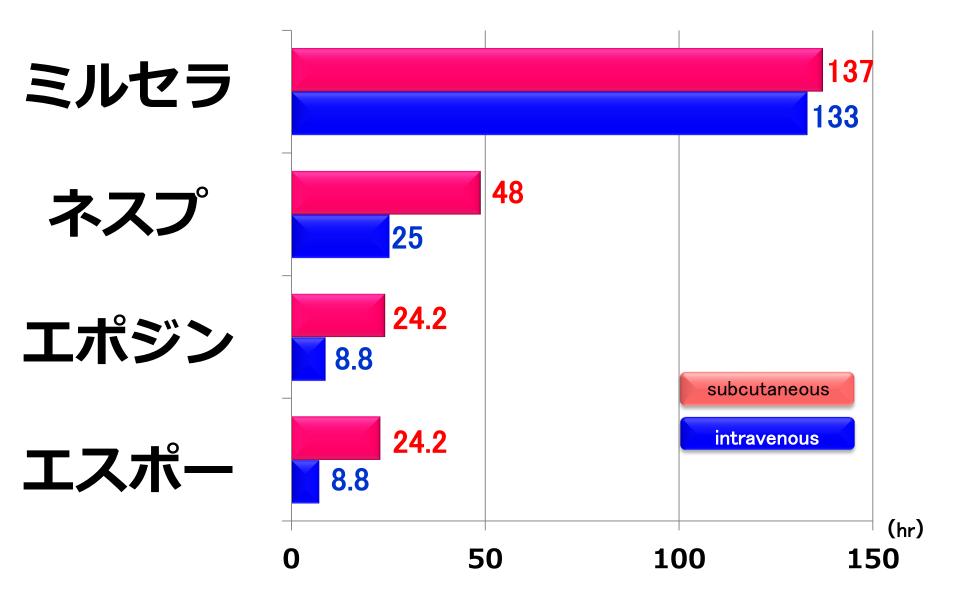
EPO製剤

エポエチンアルファ (エスポー) エポエチンベータ (エポジン)

ESA

(赤血球造血刺激因子製剤)

エポエチンベータペゴル (ミルセラ) ダルベポエチンアルファ (ネスプ)


エリスロポエチン製剤

● ヒト体内で産生されるエリスロポエチンと 同じ構造のもの(糖鎖は若干異なる)

ESA (erythropoiesis stimulating agent)

● エリスロポエチンレセプターに作用し、 赤血球造血刺激を行うものの総称

ESA製剤の半減期

EPO抵抗性貧血の定義

●日本(厳密な定義なし, 通例)

血液透析患者:rHuEPO最高投与量9,000 IU/週

CAPD患者:rHuEPO最高投与量6,000 IU/週

を投与してもHt値≥25%に維持できない高度の貧血を有する者

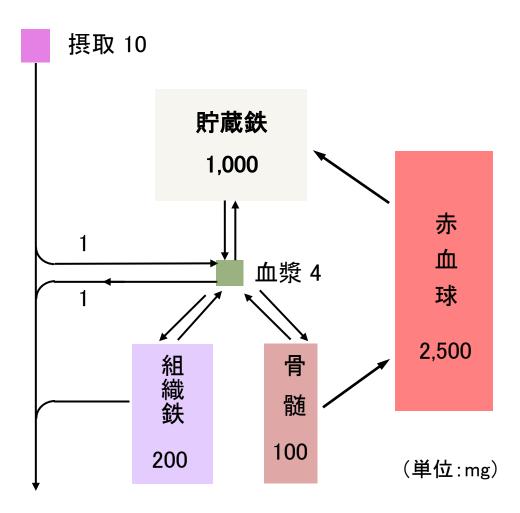
(血液透析患者:最高投与量9,000 IU/週

CAPD患者:最高投与量6,000 IU/週

を投与してもHt値≥6%[Hb値≥2 g/dL]の上昇がみられない者)

EPO反応性低下の原因

赤血球の産生低下


- ・鉄欠乏状態(最多の原因)
- ·慢性感染症(IL-1、TNF)
- •悪性腫瘍の合併
- 骨髓線維症
- 高度の二次性副甲状腺機能亢進症
- ・アルミニウム蓄積(治療初期の抵抗性に関与)
- ・透析量の不足
- ・栄養不足(特に葉酸、ビタミンB₆、B₁₂の欠乏)
- 骨髄機能抑制作用のある薬剤使用

赤血球の喪失

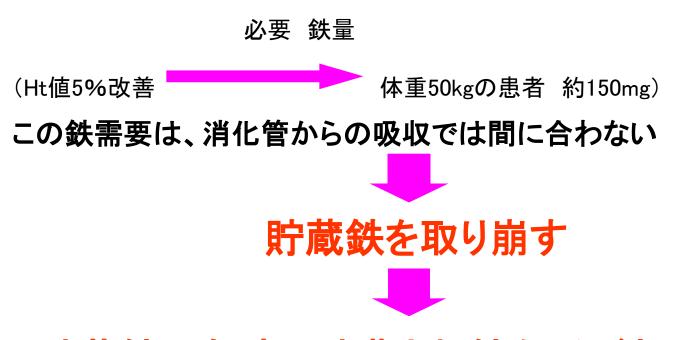
- ·出血(顕性、潜在性)、多量の採血
- ・高度の脾機能亢進症(肝硬変などに合併)
- ・溶血亢進状態(人工弁など)
- ダイアライザー再利用時の残留物

鉄欠乏状態(最多の原因)

鉄の体内動態

排泄 10

鉄欠乏症の病態


	正常状態	貯蔵鉄欠乏	潜在性 鉄欠乏状態	鉄欠乏性 貧血
貯蔵鉄 (フェリチン)				
血清鉄				
赤血球				
骨髄可染鉄	正常	正常	軽度減少	著減
トランスフェリン 鉄飽和率	35-40%	35-40%	30-35%	30%>
血清トランスフェリン レセプター	正常	正常	軽度上昇	上昇
貧血	なし	なし	なし	あり
MCV	正常	正常	正常	低下

血液透析患者の鉄動態の特徴

1	鉄喪失の亢進	透析操作に由来する失血や回路内残血 血液検査のための採血 消化管出血などの出血性疾患の合併が多い
2	消化管における 鉄吸収の低下	鉄を多く含有する食物の摂取不足 鉄吸収を促進する食物の摂取不足(ビタミンCなど) 鉄吸収を抑制する薬剤の服用(リン吸着剤、制酸剤など)
3	鉄需要の亢進	EPO投与による赤血球造血の亢進

EPO投与と鉄欠乏の関係

EPO投与により、赤血球造血が亢進し鉄が消費される

貯蔵鉄は急速に消費され鉄欠乏が起こりやすい

鉄動態の指標

血清フェリチン 貯蔵鉄 可染性骨髄鉄、肝臓鉄 ヘモグロビン 血清鉄、総鉄結合能 トランスフェリン鉄飽和率 赤血球恒数(MCV, MCH, MCHC) 低色素性赤血球比率 網状赤血球ヘモグロビン含量 機能鉄 赤血球亜鉛プロトポルフェリン 赤血球フェリチン 血清トランスフェリンレセプター フェロカイネティクス

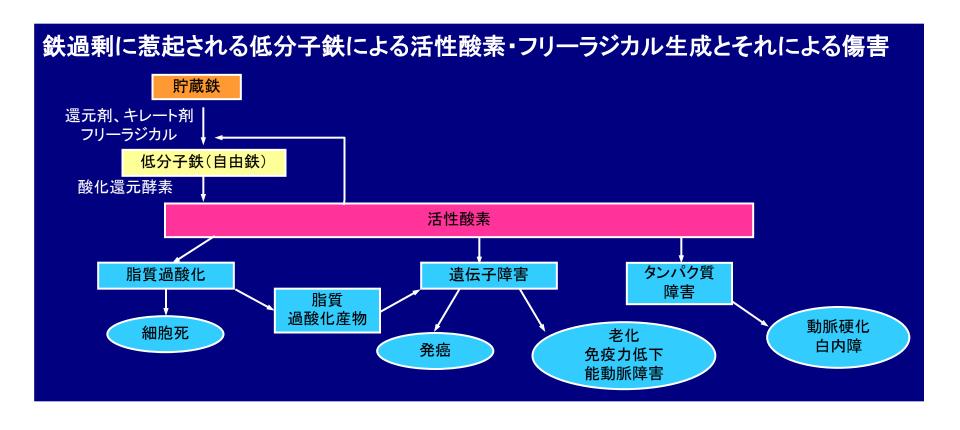
鉄補給の指標

TSAT 20%以下

血清フェリチン 100ng/mL以下

TSAT : トランスフェリン鉄飽和率 = 血清鉄 ÷ TIBC × 100 (%)

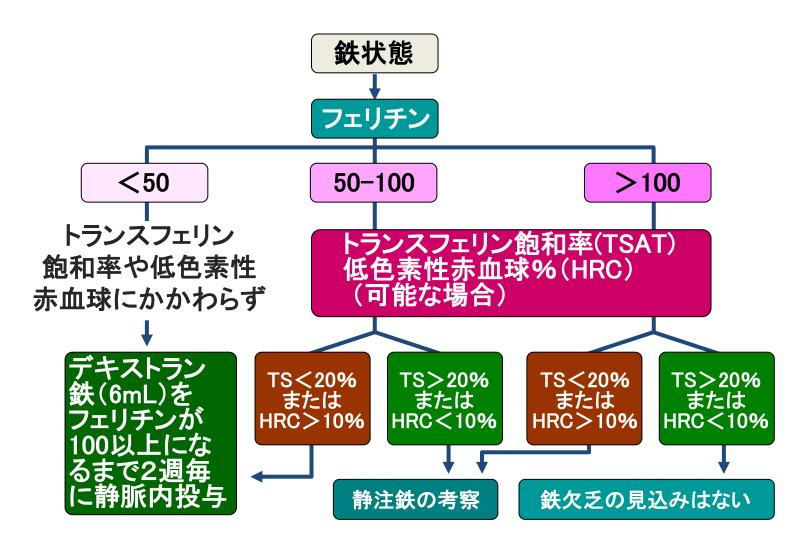
鉄欠乏の治療


- ●鉄剤補充療法
 - 経口鉄剤
 - 静注用鉄剤
- ●アスコルビン酸投与

鉄剤の静脈内投与による効果

報告者/発行年	例数	鉄剤の投与量/ 投与頻度	鉄剤投与前Ht/Hb値 (rHuEPO投与量)	鉄剤投与後 Hb濃度(g/dL) (rHuEPO投与量)
Nyvad/1994 ¹⁾	34	50~200mg/HD × 7 (1,150mg)	Ht34.3% (6,353IU/週)	Ht34.5% (4,586IU/週)
Sunder Plassmann /1995 ²⁾	52	100mg/HD (2,523±810mg)	Hb9.4g/dL (217IU/kg/週)	Hb11.1g/dL (62.6IU/kg/週)
Sepandj/1996 ³⁾	50 (rHuEPO 使用19)	100mg×2/週 (100~200µ g/Lま で)	Hb8.8g/dL (96IU/kg/週)	Hb10.0g/dL (63IU/kg/週)

鉄欠乏の治療―静注用鉄剤


- ・ 静注用鉄剤は、経口鉄剤に比べて効果は確実 →血清フェリチン値100ng/mL未満では絶対的適応
- 非生理的投与であるのでアナフィラキシー反応と鉄過剰などの 副作用に十分な注意が必要

経口鉄剤と静注鉄剤の比較

組成	欠点	
静注用		
含糖酸化鉄	毒性	
グルコン酸鉄	アナフィラキシー	
デキストラン鉄	頻回少量投与には不向き	
経口用		
硫酸鉄	消化器障害	
グルコン酸鉄	コンプライアンス	
フマル酸鉄	生物学的利用率	

EPOの鉄補給に関するまとめ

鉄欠乏の治療一アスコルビン酸

VC経口剤

腸管における鉄の吸収促進

経口鉄剤と同時投与で吸収を高める

VC静注

rHuEPO治療抵抗性の機能的鉄欠乏症に有効

(大量になるとオキサローシスを引き起こす可能性が

あるので注意が必要)

炎症•感染症

慢性の炎症・感染症

炎症•感染症

免疫担当細胞活性化 炎症性サイトカイン放出

網内の鉄取り込み亢進赤血球造血 阻害脾機能 亢進

感染症と貧血

特徴

- ①血清鉄、鉄結合能、トランスフェリン飽和率低下
- 2フェリチン増加

機序

- ①造血予備能低下・血清鉄低下、赤血球前駆細胞のEPO 感受性低下
- ②網内系鉄ブロック・網内系の貯蔵鉄増加、放出障害
- ③赤血球寿命の短縮・網内系による赤血球破壊

炎症・感染にみられる臨床所見

- 突然のEPO反応性低下
- ヘマトクリット値を維持するのに必要なrHuEPOの増量
- トランスフェリン飽和率と血清鉄の減少 (血清フェリチンは正常もしくは増加)
- 炎症/感染症を示す所見:発熱、紅斑、疼痛、浮腫、圧痛、 感染部からのドレナージ、呼吸困難
- 関節痛
- 患者は無症候であることも多い

造血を阻害するサイトカインの関与

・敗血症患者へのEPO治療における反応性に対する抗TNF抗体、 IL-1受容体拮抗薬及びプラセボの影響

EPO(250IU/kg週3回)への 追加治療	Hb値(g/dL) 処置前 2週間後		輸血量
抗TNF抗体(n=5)	9.0±1.3	10.9 ± 1.2°	2.2±1.3
IL-1受容体拮抗薬(n=8)	8.9±1.4	11.1 ± 1.3ª	2.1±1.4
プラセボ(n=10)	9.2±1.5	9.3±1.5	5.2 ± 2.2 ^b

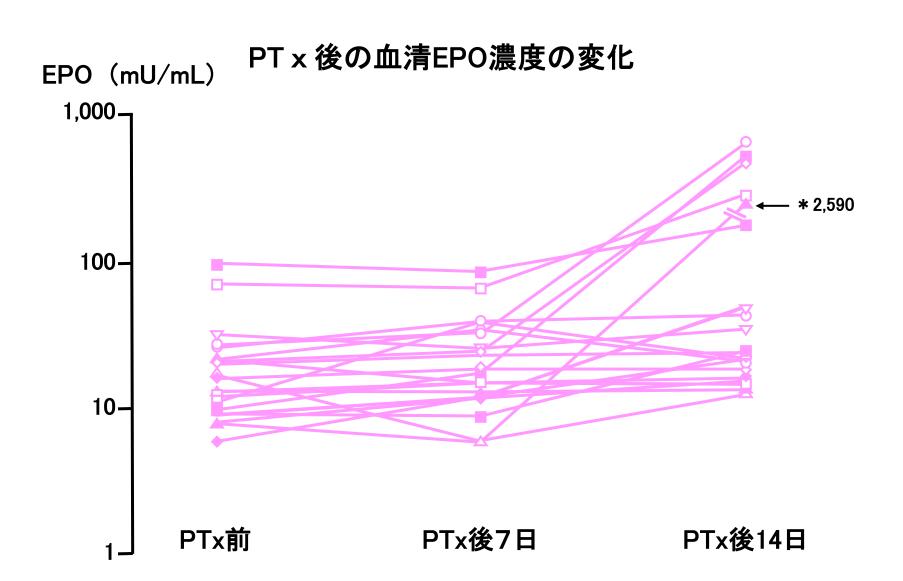
Mean ± S.D.

a:p < 0.05 (vs Baseline)

b:p<0.05(vs 抗TNF抗体及びIL-1受容体拮抗薬)

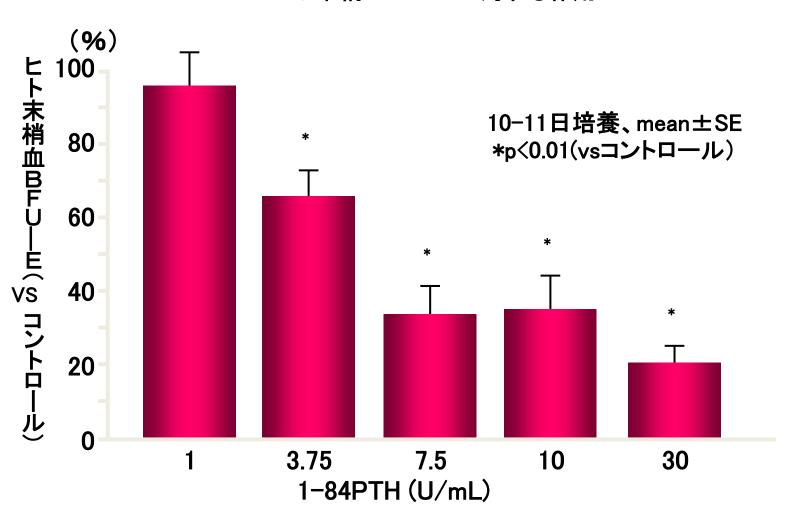
二次性副甲状腺機能亢進症

PTHによる貧血の発症機序


1. 直接的作用

- 1)内因性EPO産生抑制
- 2)BFU-E形成の抑制
- 3)へム合成の阻害
- 4) 赤血球寿命の短縮、溶血

2. 間接的作用


1) 骨髄線維化による造血の場の減少

PTHによる貧血の発症機序

PTHによる造血阻害(in vitro)

PTHのヒト末梢血BFU-Eに対する作用

PTHによる貧血の発症機序

2. 間接的作用

1) 骨髄線維化による造血の場の減少

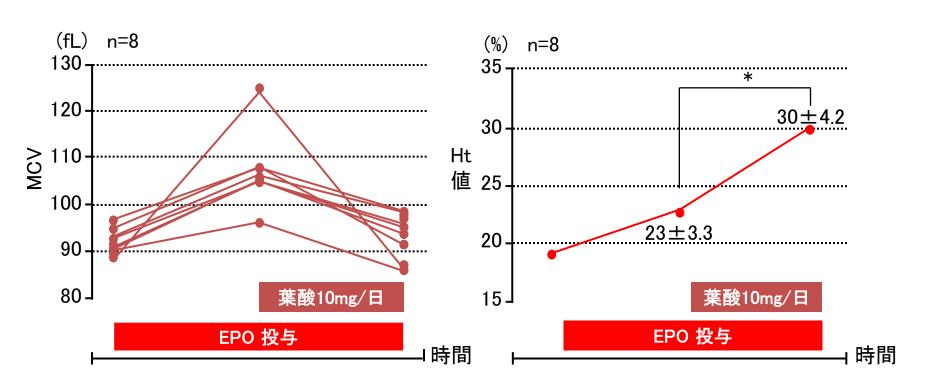
	高反応群(n=11)	低反応群(n=7)
血清PTH濃度(pg/mL)	266±322	800±648 [#]
線維組織量(%)	1.1 ± 1.1	15.6 ± 16.4 ^{††}
破骨細胞面(%)	3.1 ± 2.6	8.7±7.8 ^{# #}
eroded surface(%)	5.0 ± 2.6	10.2±5.2 ^{††}
EPO(U/kg, $3 \times /w$)	56±18	174±33
アルカリフォスファターセ [*] (U/L)	130±132	296±220 [†]

 $\dagger: p = 0.06$ $\dagger \dagger: p = 0.04$ #: p = 0.03 # #: p = 0.009

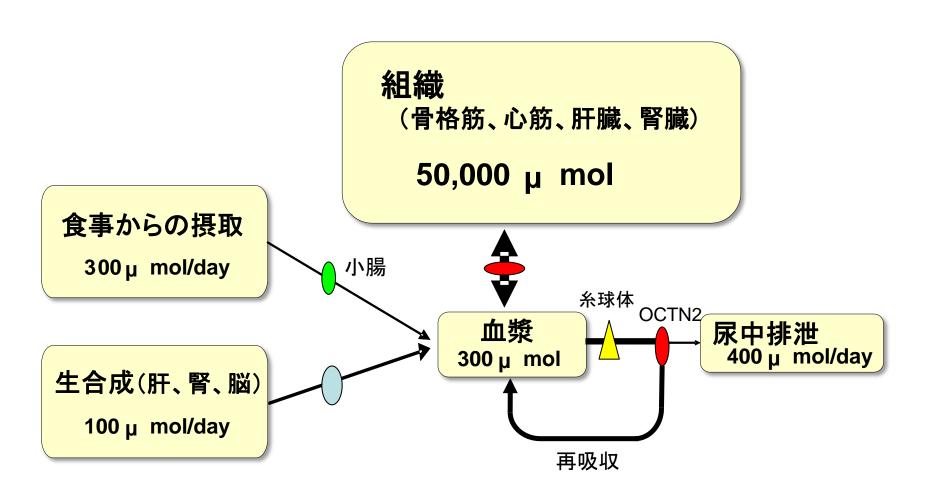
 $Mean \pm S.D$

.

骨髄線維化

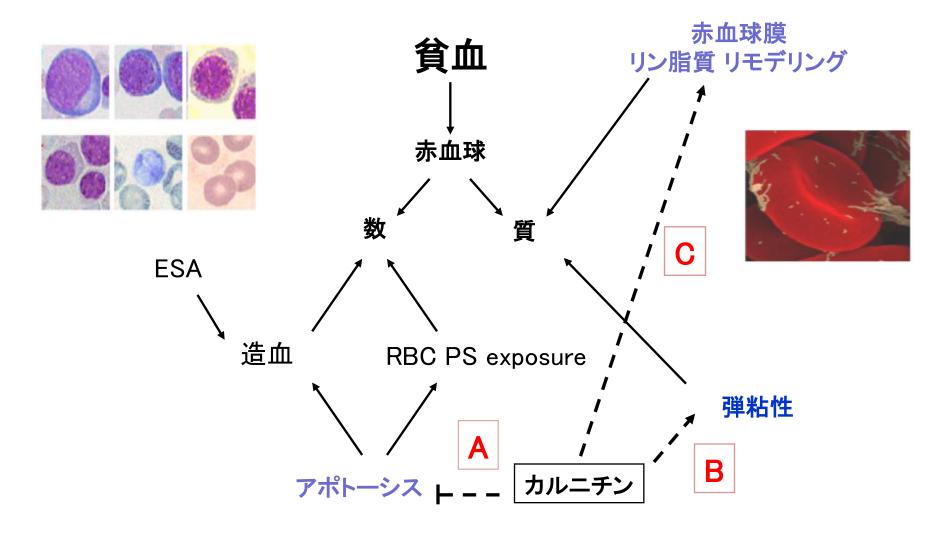

2°HPTの代表的病変は線維性骨炎である

栄養不足

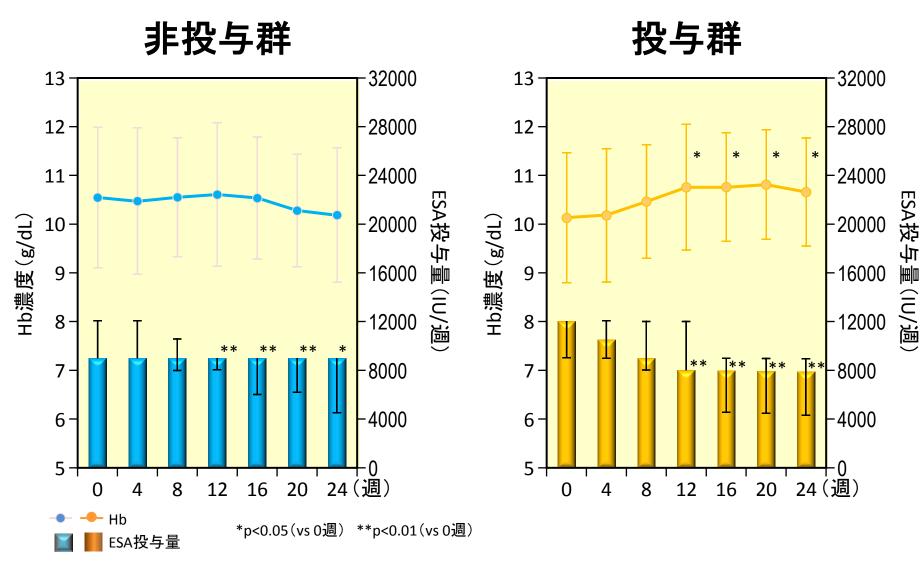

葉酸の補給による反応性の上昇

MCVおよびHt値の推移

*p<0.01 mean ±SD, Student's t 検定


カルニチンのホメオスタシスと体内分布

カルニチンの役割

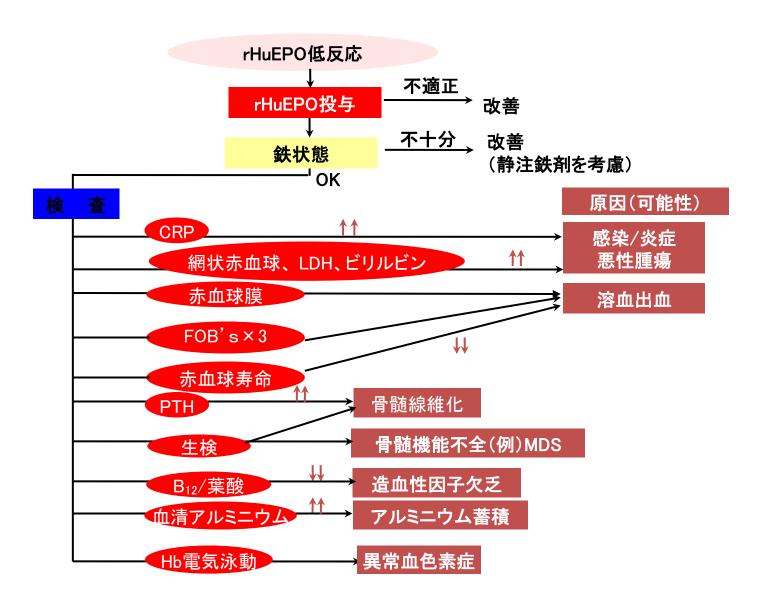

- 1)長鎖脂肪酸のミトコンドリアマトリックス内への輸送
 - →エネルギー代謝に重要(β酸化→ATP産生)
- 2)ミトコンドリア内のCoA/アシルCoA比率の調整
 - →遊離CoAプール維持に重要
- 3)アシル化合物の細胞内からの排除
 - →細胞毒の排除に重要
- 4)赤血球膜などの生体膜安定性維持
 - →赤血球の寿命・ターンオーバーに重要
- 5)抗炎症作用

赤血球に対するカルニチンの役割

PS exposure: Phosphatidylserine exposure (マクロファージが赤血球を除外する歳のシグナル)

Hb濃度, ESA投与量の推移

Hb値::対応のあるt-検定を実施し、投与前と比較した。 ESA投与量: Wilcoxon signed rank test定を実施し、投与前と比較した。ESA 投与量は、median (interquartile range)を表示。


薬剤性

薬剤性血液障害

巨赤芽球性貧血を来す可能性がある薬剤 溶血性貧血を来す可能性がある薬剤 1.ペニシリン系 1.葉酸欠乏性 2.セファロスポリン系 抗けいれん薬一肝臓におけ るmicrosomeでの酵素誘導 3.キニジン 経口避妊薬—尿中葉酸排 同じ機序の薬剤: 泄の増加 スチボフェン、キニーネ、 葉酸代謝拮抗剤―メソトレ パラアミノサリチル酸、 キセート フェナセチン、スルフォナ ミド、クロルプラマジン、 2.ビタミンB12欠乏症 イソニアジド 4.α -メチルドパ 同じ機序の薬剤 Lードパ、メフェナム酸、 クロルジアゼポキシド

まとめ

EPO抵抗性の原因と検査

